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For multidimensional NMR method, indirect dimensional non-uniform sparse sampling can dramatically
shorten acquisition time of the experiments. However, the non-uniformly sampled NMR data cannot be
processed directly using fast Fourier transform (FFT). We show that the non-uniformly sampled NMR
data can be reconstructed to Cartesian grid with the gridding method that has been wide applied in
MRI, and sequentially be processed using FFT. The proposed gridding-FFT (GFFT) method increases the
processing speed sharply compared with the previously proposed non-uniform Fourier Transform, and
may speed up application of the non-uniform sparse sampling approaches.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Multidimensional (mD) NMR spectroscopy can dramatically re-
duce peak overlapping, and provide molecular structural informa-
tion such as chemical bond linkages, and spatial distances between
nuclei, therefore it has been widely used in the structure, interac-
tion and dynamic studies of biological macromolecules. However,
the experimental time of the mD NMR spectroscopy increases dra-
matically when expanding sampling dimensions, which results in
that massive instrument time is required in 3D/4D NMR experi-
ment [1], hence improving the efficiency of data acquisition and
processing has attracted more and more attention [2,3].

There are numerous approaches have been developed, such as re-
duced dimensionality (RD) [4,5], GFT [6–8], projection reconstruc-
tion (PR) [9–12], covariance NMR [13,14], filter diagonalization
method (FDM) [15–17], maximum entropy (MaxEnt) [18–20], mul-
tidimensional decomposition (MDD) [21,22], hyperdimensional
NMR [23–25], Hadamard encoding [26–28], Single-Scan [29–31],
relaxation delay optimization [32–34], and non-uniform Fourier
transformation (NU-FT) [35–37]. Most of the methods utilize
non-uniform sparse or nonlinear sampling patterns in indirect
dimensions with particular data processing methods. Although, data
processing takes less time than acquisition for mD NMR, the proce-
dure is generally repeated several times in order to optimize the
parameters and to obtain high quality spectra. Therefore, fast and
widely applicable processing method is highly demanded.
ll rights reserved.
Without the restraints of sampling pattern, line shape, parame-
ters tuning, or previous spectral information, NU-FT becomes the
most robust processing approach. However, in case of non-uniform
sampling (NUS), the time domain data points may not locate on the
knots of Cartesian grids, fast Fourier transformation (FFT) cannot be
used in a straight forward manner, which slows down the speed of
NU-FT very much. To take the advantage of the high efficiency of
FFT, Zhou et al. proposed to replace the off-grid sampling points with
their nearest grid points [38]; Marion used Lagrange interpolation to
recast the non-uniformly sampled data into the uniformly sampled
data [39]. Recently, Matsuki proposed a iterative method SIFT using
the Gerchberg–Papoulis (G-P) algorithm on the on-grid non-uni-
formly sampled NMR data [40]. However, on-grid non-uniform sam-
pling pattern results in problem known as primary and secondary
aliasing [37,41], and SIFT must incorporate the previous spectral
information, such as empty regions in the NMR spectra. Herein, we
described an alternative processing strategy, gridding-FFT (GFFT),
to perform FFT on arbitrary non-uniformly sampled NMR data with-
out any requirement of previous spectral information. The method is
generally applicable to multidimensional FT of off-grid sampled
data.
2. Theoretical basis

The key point of the GFFT technique is using gridding algorithm
[42–45], which is much less error prone than interpolation [44]
and has been widely applied in radio astronomy and magnetic
resonance imaging (MRI) [45], to reconstruct the non-uniformly
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sampled data to Cartesian grids required for FFT. The procedure of
the algorithm is shown in Fig. 1. Assume f(t) is the non-uniformly
sampled data, then the aim of GFFT is to quickly obtain its Fourier
transform f̂ ðvÞ, i.e. NMR spectrum, through FFT. The first step of
gridding method is to numerically compute convolution product
[44] on the Cartesian grid, as shown in the following equation:

gðtÞ ¼ ðc � f ÞðtÞ ¼
Z

cðt � t0Þf ðt0Þdt0; ð1Þ

where c is convolution function. Here we use a Kaiser–Bessel func-
tion [43,44],

KBðtÞ ¼ I0ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2t=WÞ

p
Þ=W ; ð2Þ

where W is the convolution width, b is a free design parameter, and
I0 denotes zero-order modified Bessel function of the first kind.
According to Nyquist theorem, the unit size of grid is determined
by spectral width. When calculating a 2D grid, c(t1, t2) can be writ-
ten as c(t1)c(t2), and similarly, c(t1, t2, t3) as c(t1)c(t2)c(t3) in 3D case.
Since the domain of c(t) is a zero-centered interval and the acquisi-
tion times of NMR experiments are always positive, the sampled
data must be shifted into a centered interval before convolution,
which results in an phase change in spectrum according to Fourier
transform shift theorem. Because the convolution function can be
set very narrow to reduce calculation amount, this convolution cal-
culation must be fast. In this step, the raw data may be processed
ahead with sampling density function to reduce the artifact induced
by the point spread function of non-uniform sampling pattern
[43,46].
Fig. 1. Procedure of the proposed GFFT strategy, where f(t1, t2) is non-uniformly
sampled NMR data in the indirect dimensions in case of 3D NUS experiment .
The second step is to perform FFT on the gridded data g(t) as in
conventional NMR spectrum processing, to get its Fourier trans-
form ĝðvÞ. Since gðtÞ ¼ c � f ðtÞ, from convolution theorem we know
ĝðvÞ ¼ ĉ � f̂ ðvÞ. When Kaiser–Bessel function is used as convolution
function, the weight correction function [44] is shown in the
following equation.

ĉðvÞ ¼ KBðvÞ ¼
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � p2W2v2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � p2W2v2

q ð3Þ

This function will enhance the intensities of peaks in the center of
spectrum, while weaken those in the fringe of spectrum. To obtain
the spectrum f̂ ðvÞ, the weight correction function ĉðvÞ must be
divided from ĝðvÞ, which is just the final step of the gridding
reconstruction process.

3. Experimental validation and discussion

To verify the feasibility and speed advantage of the GFFT, con-
ventional 3D HNCO experiment and its indirect dimensional spiral
sampling version [35,47] were performed. The sample was a 1 mM
aqueous solution (10% D2O) of uniformly 13C and 15N labeled ubiq-
uitin. The NMR experiments were carried out on a Bruker Avance
III 800 spectrometer equipped with cryoprobe. In the conventional
3D HNCO experiment, the indirect dimensional evolution steps
were 48 and 32 for t1 and t2, respectively. In the spiral sampling
experiment, the total number of the indirect dimensional sampling
points was 403, as shown in Fig. 2.

Both GFFT and NU-FT [35] were applied to spiral sampled HNCO
data for comparison. After the conventional processing along the
direct dimension, every t1–t2 plane was extracted to perform GFFT
or NU-FT to obtain the whole NMR spectrum. The processing pro-
grams were written in C++ language and available upon request
from the authors. As shown in Fig. 3, all spectral information was
recovered by GFFT (Fig. 3B) or NU-FT (Fig. 3C), however, the former
cost 0.875 s while the latter cost 52.922 s for a 256 � 256 F1–F2

plane on our computer equipped with Intel Core2 Duo CPU
E8300. When the spectral resolution was extended to 512 � 512,
the processing time was 1.25 s with GFFT, while it took 212.522 s
with NU-FT. It is known that higher digital resolution or higher
dimensionality requires more data points and longer processing
time, in such cases, the speed advantage of GFFT is more obvious.

The speed advantage of GFFT over NU-FT is due to its much
lower computational complexity. For a size SI1 � SI2 spectrum
Fig. 2. The sampling points in the t1–t2 plane of the spiral HNCO experiment.



Fig. 3. Comparison of F1/F2 planes of HNCO spectra of ubiquitin for x3(1H, d 8.46). (A) Conventional HNCO; spiral sampled HNCO, processed using (B) GFFT (processing time
0.875 s) and (C) NU-FT (processing time 52.922 s). Kaiser–Bessel function KBðtÞ ¼ I0ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2t=WÞ

p
Þ=W was chosen as convolution function of this gridding calculation, where

I0 denotes zero-order modified Bessel function of the first kind. According to Ref. [44], W ¼ K=ðd � TDÞ, where d is the spectral resolution (reciprocal of acquisition time), TD is
the number of reconstructed points along the certain dimension, and K� TD, which confines the convolution function width as shown in Fig. 4; and b = apWr, where r is the
spectral width along the certain dimension, and a is another parameter to adjust the shape of Kaiser–Bessel function (a P 1). In this gridding calculation, W was 0.001656 in
t1 dimension, or 0.002936 in t2 dimension, b was 28.274334 in t1 dimension, or 23.561945 in t2 dimension.

Fig. 4. The computational procedures of (A) NU-FT (MFT) and (B) GFFT. For GFFT,
each non-uniformly sampled data point is reconstructed to a K1 � K2 submatrix
through convolution calculation, and the final gridded matrix for FFT is just the
superposition of all these submatrices, so the Computational complexity of gridding
is O(nK1K2), where n is the number of sampling points.

Fig. 5. Oblique view of comparison of F1/F2 planes of HNCO spectra of ubiquitin for x3(1

and (C) NU-FT. The ring shape artifacts caused by the point spread function of spiral sa
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transformed from n sampling points, the computational complex-
ity of NU-FT is O(nN), where N = SI1 � SI2. As shown in Fig. 4, in
gridding procedure each sampled data point is reconstructed to a
K1 � K2 submatrix through convolution calculation, and the final
gridded matrix for FFT is just the superposition of all these subma-
trices due to the linearity of convolution. From this procedure, it
can be seen that the computational complexity of gridding is
O(nK1K2). Remind the well known computational complexity of
FFT is O(N log N), where n� N, and K1K2� N, it can be concluded
that GFFT has much higher efficiency than NU-FT.

The non-uniform sampling pattern is always accompanied with
the artifact induced by the point spread function of its sampling
function [48]. In NMR experiments, the acquired data is actually
not the true continuous signal f(t), but the product with the sam-
pling function, s(t)f(t). From the convolution theorem of FT, the fre-
quency domain spectrum calculated from the sampled data is
ŝðvÞ � f̂ ðvÞ, which is different from the true spectrum f̂ ðvÞ. ŝðvÞ is
called the point spread function of the sampling procedure. In case
of uniform sampling pattern, ŝðvÞ does not cause artifact in spec-
trum, because s(t) is constant and there is only one frequency com-
ponent in ŝðvÞ. However, when non-uniform sampling pattern is
used, ŝðvÞ will induce artifacts in the spectrum. Dividing each
sampling point with sampling density qðt1; t2Þ ¼ sðt1; t2Þ � cðt1; t2Þ
before the convolution calculation in step 1 of GFFT, can compen-
sate the sampling density and reduce the artifact induced by the
point spread function [43], as shown in Fig. 5.

Compared with other processing approaches on non-uniformly
sampled NMR data, GFFT owns many advantages. As a FT based
H, d 8.46). (A) Conventional HNCO; spiral sampled HNCO, processed using (B) GFFT
mpling in (B) is weaken than (C) to some extent.
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method, GFFT is highly robust, so that it is not influenced by spec-
tral quality, line shape, and signal overlapping, and does not need
parameter tuning or trial-and-error approach either. In the aspect
of processing speed, GFFT is much faster than NU-FT. GFFT is able
to handle any kinds of non-uniform sampling patterns, no matter
on-grid or off-grid, spiral distribution or radial distribution, which
means off-grid sampling pattern can be used to avoid aliasing.

4. Conclusions

As a general processing method for NMR data with non-uniform
sparse sampling, GFFT is amenable for arbitrary sampling pattern,
and any dimensionality. Compared with NU-FT, the speed advan-
tage of GFFT is distinct, and may be more remarkable when wider
spectral width, higher resolution or higher dimensionality is re-
quired, because the size of spectra should be larger in these kinds
of situations. Sampling density compensating in gridding can re-
duce the artifacts induced by point spread function of non-uniform
sampling pattern.
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